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Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns
formed by block copolymers
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The effect of large amplitude oscillatory shear on two-dimensional stripe patterns formed by block copoly-
mers was investigated using cell dynamics simulations. A global orientational order parameterS and a corre-
lation function for stripe normalsG(r2r 8) were used to characterize the degree of stripe orientation under
shear. The kinetics of stripe alignment, quantified byS, at various shear and quench conditions were studied as
a function of strain amplitude, shear frequency, and temperature. The mechanisms of shear alignment and
defect annihilation were investigated. A critical shear condition for complete alignment of stripes along the
shear direction was also identified.
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I. INTRODUCTION

Block copolymers have found wide application becau
their morphology can be systematically modified not only
controlling the composition and segment length of the po
mer blocks but also by changing the processing method
particular, the global orientation and topological defects i
microphase-separated morphology are important factors
fecting the optical, permeability, electrical, and mechani
properties of block copolymers. The use of block copolym
in electronic and photonic applications requires the prod
tion of highly ordered and defect-free materials@1#. Flow-
induced alignment of block copolymer microstructures h
been demonstrated for materials subjected to oscillatory
steady shear@2–5#, extrusion@6#, extensional flow@7,8#, and
roll casting@8,9#. Alignment and defect removal mechanism
in a lamellar phase induced by an electric field have a
been studied in the bulk@10,11#. All of the preceding studies
have focused on bulk samples. Alignment in block copo
mer films has been achieved using electric fields@12,13#, by
tuning substrate surface energy@14#, and by patterning using
self-assembled monolayers@15,16#. Shearing of block co-
polymers in films between parallel plates is often used
align samples; however, these are usually closer to the
three-dimensional limit than the two-dimensional limit.

The structure of defects in block copolymers has been
subject of experimental@17,18# and theoretical@19,20# inves-
tigation. The effect of shear on defects has also been stud
in particular, Winey and co-workers have undertaken a co
prehensive examination of the effects of steady or large
plitude oscillatory shear on kink bands and tilt grain boun
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aries@21–23#. The kink bands themselves are generated i
controlled manner through variation of the rate and am
tude of steady shear. The kinetics of alignment~defect elimi-
nation! in block copolymers under shear flow have also be
probed via rheology and birefringence@24–26# and small-
angle scattering experiments@1,4,27,28#.

Computer simulation is playing an increasingly importa
role in understanding the mechanisms of morpholo
changes in block copolymers. The cell dynamics simulat
~CDS! method is a very promising approach to modeling t
mesoscopic structure of block copolymers@29–35# and the
influence of external fields on morphology. The effect
shear on two-dimensional hexagonal@36# and stripe@37# pat-
terns has previously been investigated by cell dynam
simulations. The effects of both oscillatory and step strain
the hexagonal phase have also been simulated using the
dynamics method@36#. The relaxation of the shear stres
following step strain was analyzed as a function of str
amplitude, and a two-step relaxation process was obse
for large strains. After the rapid initial decrease of stress d
to relaxation of distorted domains, a plateau was obser
followed by another decrease in stress that was ascribe
the slippage of lattice planes. Under oscillatory shear, lin
viscoleastic behavior was observed at low strain amplitud
However, when large amplitude oscillatory shear was
plied, a nonsinusoidal stress was found to be out of ph
with the applied sinusoidal strain and slip of lattice plan
was again inferred@38#. Kodama and Doi@37# performed
cell dynamics simulations of stripe patterns under ste
shear flow and observed two types of lamellar instabili
breakup-recombination and undulation. A stability diagra
for these structures was also obtained in terms of a temp
turelike parameter and wave number corresponding to
lamellar period. Drolet, Chen, and Vin˜als @39# analyzed the
stability boundaries of deformed lamellar morphologies u
der shear via numerical analysis of a linearized version o
Cahn-Hilliard-Cook equation with added convective ter
They found that the boundaries are affected by shear am
tude and frequency.
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REN, HAMLEY, TEIXEIRA, AND OLMSTED PHYSICAL REVIEW E63 041503
We present simulation results for a two-dimension
stripe phase as formed, for example, by symmetric bl
copolymers~which in bulk would form a lamellar phase!.
Although our results are presented in terms of the effec
shear on a block copolymer stripe phase, the conclus
should apply for any stripe pattern that can be oriented
shear because the cell dynamics equations are not speci
block copolymers. However, stripe phases in other syst
such as type I superconductor films@40#, ferromagnetic gar-
net films@41,42#, or Langmuir monolayers of lipid molecule
@42# cannot be oriented by shear.

The stripe orientation is characterized using an interf
orientational order parameter and an interface normal co
lation function. We have investigated the dynamics of str
alignment under large amplitude oscillatory shear at vari
shear and quench conditions. A critical condition~shear fre-
quency and amplitude! for complete alignment of the co
polymer stripes under oscillatory shear is given. Finally,
process of defect annihilation under shear is investigated

The paper is organized as follows. In Sec. II, details of
CDS model are provided, followed in Sec. III by a discu
sion of the results, first introducing measures of the orien
tional order of stripes and a correlation function for stri
orientation. Then the dynamics of shear-induced alignm
as a function of temperature and the frequency and ampli
of oscillatory shear are investigated. We then identify a cr
cal condition for shear-induced parallel alignment of strip
The nature of the defect structures in the stripe pattern
the effects of thermal annealing and shearing on defect
nihilation are then considered, as are the effect of system
and simulation time step. Finally, conclusions are summ
rized.

II. THE CDS MODEL

In the cell dynamics method, an appropriate order para
eter takes valuesc(t,i ) in cell i of a discrete lattice at timet.
For anAB diblock copolymer a suitable choice is the com
positional order parameter

c~r !5fA~r !2fB~r !1~122 f !, ~1!

where fA(r ) and fB(r ) are the local volume fractions o
blocksA andB, andf is the block length ratio.

We consider first dynamical equations in the absence
shear. The cell dynamics equations for a conserved o
parameter, appropriate for a block copolymer, can be sh
to correspond to a coarse-grained discretization of the Ca
Hilliard-Cook equation@43#,

]c

]t
5M¹2S dF~c!

dc D1hj~r ,t !, ~2!

whereM is a phenomenological mobility constant andh is
the amplitude of thermal noise. Here we setM51 which
correspondingly sets the time scale for diffusive proces
Also in Eq. ~2! j(r ,t) is a Gaussian random noise term
satisfying the fluctuation-dissipation theorem, in this case

^j~r ,t !&50,
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^j~r ,t !j~r ,t !&522kBTM¹2d~r2r 8!d~ t2t8!. ~3!

HerekB is Boltzmann’s constant andT denotes the tempera
ture. The fluctuation-dissipation theorem is satisfied forh
51, but for other values the noise has arbitrary strength
Eq. ~2!, F(c) is the free energy functional, consisting o
short range and long range interaction terms:

F~c!5FS~c!1FL~c!. ~4!

The short range interaction term is written as@30#

FS~c!5E dr S H~c!1
D

2
@“c~r !#2D , ~5!

where D is a phenomenological constant that controls
free energy penalty for spatial composition heterogene
andH(c) is a free energy functional that has two minima
an ordered phase which can be written as@33#

H~c!5S 2
t

2
1

A

2
~122 f !2Dc1

v
3

~122 f !c31
u

4
c4.

~6!

Here t is a temperaturelike parameter andA, v, and u are
phenomenological constants. The long range interaction t
in Eq. ~4! is given by@44#

FL~c!5
B

2 E dr1E dr2G~r12r2!@c~r1!2c̄#@c~r2!2c̄#,

~7!

where G(r12r2) is the Green’s function for the Laplac
equation¹2G(r12r2)52d(r12r2). The parametersD, B,
andt may be related to polymer characteristics, such as
degree of polymerizationN, the segment lengthb, and the
Flory-Huggins interaction parameter@36,37#.

We now turn to a description of the dynamics of a blo
copolymer in the presence of a flow field, neglecting hyd
dynamics. The time evolution of the order parameter unde
macroscopic shear flow is given by a CHC equation modifi
by addition of a convective term@36,37#,

]c

]t
1“•~vc!5M¹2S dF~c!

dc D1hj~r ,t !, ~8!

wherev5(vx ,vy ,vz) is the flow field. We consider oscilla
tory shear flows defined by

vx5ġ~ t !y, vy5vz50, ~9!

whereg(t)5ga sin(vt). Writing g(c)5dH(c)/dc, Eq. ~8!
thus becomes

]c

]t
52ġy

]c

]x
1¹2c2¹2@g~c!1D¹2c#2Bc1hj.

~10!

Cell dynamics simulations correspond to coarse-grained
cretizations of the Cahn-Hilliard-Cook~or time-dependent
Ginzburg-Landau! equation. The method is no less realis
3-2
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CELL DYNAMICS SIMULATIONS OF SHEAR-INDUCED . . . PHYSICAL REVIEW E63 041503
than direct numerical integration of the partial different
equations, and provides significant computational advanta
@43#. This allows easier exploration of the late-time regim
of phase ordering. Furthermore, it has been shown that
CDS method has essentially the same dynamical sca
properties as the CHC equation, and is therefore a relia
tool for its elucidation@43#.

The discrete cell dynamics equation corresponding to
expression used in the simulations is@30,36#,

c~n,t1Dt !5c~n,t !2Dt$^^G~n,t !&&2G~n,t !1Bc~n,t !

2hj~n,t !1 1
2 ġy@c~nx11,ny,t !

2c~nx21,ny ,t !#%. ~11!

HereDt is the time step

G~n,t !5g„c~n,t !…2c~n,t !1D@^^c~n,t !&&2c~n,t !#,
~12!

where the map function used was@35#

g~c!5@11t2A~122 f !2#c2v~122 f !c22uc3.
~13!

This polynomial form differs from the usual symmetric fun
tion g(c)5A tanh(c) used in cell dynamics simulation
@43,45#, because it is necessary to include a cubic term in
~6! to account for the formation of hexagonal and cub
phases when using a Landau free energy.

In the present study, the stripe phase was simulated f
diblock copolymer withf 50.5. Sheared periodic bounda
conditions were used@36#. The simulations were performe
with the following parameters: D50.5, B50.02, u50.5,
andv51.5. The results presented herein were obtained f
1283128 lattice. However, we have also performed simu
tions on a 2563256 lattice. The ordering kinetics are foun
to be the same, provided that the time step is rescaled
discussed in Sec. III G below. The noise amplitude was z
except where stated.

III. RESULTS AND DISCUSSION

A. Characterization of copolymer stripes

The degree of alignment of the stripes is quantified us
the two-dimensional nematic orientational order paramet

S5^2 cos2 u21&, ~14!

whereu is the angle between the unit normal vector of t
stripes and the unit normal vector in the direction of t
applied shear field. The spatial average takes the valuS
50 for an isotropic phase, andS51 for a completely ori-
ented phase.

To quantify the correlation of stripe orientation over d
ferent length scales, and therefore characterize the effe
defects on the morphology, a correlation function for t
stripe normaln(r ) at the interface betweenA and B stripes
was introduced:
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G~r2r 8!5^un~r !•n~r 8!u&5^ei2u~r !e2 i2u~r8!&

5^2 cos2 b21&, ~15!

whereb is the angle between the unit normal vectors and^ &
denotes a spatial average. For the discrete stripes in the s
lation, b ~equal tonp/4, n50,1,2,...,7! was computed with
respect to the vector between adjacent cells at the st
boundary. For smallr 5r2r 8, G(r2r 8) is strongly depen-
dent on local stripe shape and orientation. For largerr2r 8,
G(r2r 8) approaches its value for random stripe orientat
~equal to zero!. For complete alignment along the shear d
rection,G(r2r 8) approaches 1. Therefore, the interface n
mal correlation function depends on the spatial extent
density of defects.

B. Dynamics of stripe alignment

Results from a simulation where large amplitude oscil
tory shear was applied to a macroscopically disordered st
pattern~generated from an initially random disordered sta!
are shown in Fig. 1. Figure 1~a! is an unsheared stripe pa
tern. Figures 1~b!–1~d! contain stripe patterns generated af
53105 time steps under oscillatory shear for different co
binations of amplitude and frequency. Figure 2 shows
time development of the orientational order parameterS for
the same conditions as in Fig. 1; however, the mean o
parameter was computed from seven independent runs
seen in Fig. 2,S reaches a constant value for all cases st
ied, confirming that a steady state has been reached. It
noted that the pattern was not static, even thoughS remained
at its plateau value. Instead, the defect pattern moved aro
but could not be annihilated under the strength of the sh
field applied even after 73105 time steps. In the case

FIG. 1. Stripe morphology achieved after prolonged oscillato
shear under various shear conditions, as indicated (t50.35).
3-3
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REN, HAMLEY, TEIXEIRA, AND OLMSTED PHYSICAL REVIEW E63 041503
shown in Figs. 1~b!, 1~c!, and 1~d! only partial alignment of
the stripes is attained, in which many defects, such as d
cations, disclinations, and sharp bends, are retained. The
fect density varies with the shear amplitude and freque
applied. Saturation of alignment is achieved only abov
threshold shear condition@such as shear amplitudega50.5,
frequencyv50.006, as shown in Fig. 1~d!#. The time to
reach saturated alignment depends on shear condition
general, a stronger shear field~larger amplitude and highe
frequency! causes the plateau to be reached sooner.

The effect of the coupling between shear and tempera
was also explored. Figure 3 shows the effect of the temp
turelike parametert ~related to quench depth! on the align-
ment dynamics of the stripe system under fixed condition

FIG. 2. Alignment kinetics under the shear conditions shown
Fig. 1. The curves correspond to parts~b!–~d! in Fig. 1.

FIG. 3. Alignment kinetics for different quench temperaturest.
Oscillatory shear~ga50.5, v50.007! was appliedafter the evolu-
tion of an unaligned structure.
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oscillatory shear~ga50.5, v50.007!. Three cases with dif-
ferentt values~t50.30, 0.36, and 0.42! were simulated with
the thermal noise amplitudeh50. In the simulation, a stead
state unaligned stripe pattern was first generated from
initially random disordered state. Oscillatory shear was th
applied to the system at constantt during the pattern evolu-
tion. The data~obtained from at least five independent run!
reveal that, as the quench deepens~largert values!, the sys-
tem becomes less susceptible to shear orientation, an
lower degree of alignment and more defects were found
lowing shear. Alignment is also slower for a deeper quen
The development of the order parameter when shear
applied from the start of the quench~i.e., att50 the system
was in the isotropic state! is shown in Fig. 4 for the same
quench depths as Fig. 3, and again using an average ov
least five independent runs. In general, the order param
kinetics ~and saturation value ofS! are not strongly depen
dent on the path, i.e., the time at which shear is applied.

C. Critical shear conditions for parallel alignment

Figure 5 shows the steady state value ofSas a function of
shear amplitude at two different frequencies~v50.0015 and
0.0035 fort50.35!. The oscillatory shear was applied aft
the steady state structure was formed~about 33104 time
steps!. The runs were continued until the alignment satura
~between 105 and 106 time steps! and the data points show
in the figure are averages from at least three indepen
runs. The data reveal that at a fixed frequency the orie
tional order parameterS gradually increases with increasin
shear amplitude until complete alignment is achieved a
critical value of the shear amplitude. This critical value
dependent on shear frequency: at a higher frequency, a lo
shear amplitude was needed to align the stripes complet

n

FIG. 4. Alignment kinetics for different quench temperaturet.
Oscillatory shear~ga50.5, v50.007! was appliedduring the evo-
lution of the structure.
3-4
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CELL DYNAMICS SIMULATIONS OF SHEAR-INDUCED . . . PHYSICAL REVIEW E63 041503
Representative results showing the dependence ofS on
frequency for different shear amplitudes are shown in Fig
In contrast to the smooth dependence ofS on strain ampli-
tude, the orientational order parameter increases sharply
critical frequency above which complete alignment
achieved for sufficiently large strains, the magnitude of
critical frequency depending on strain.

The critical shear amplitude versus critical oscillatory fr
quency for achieving essentially complete stripe alignmen
shown in Fig. 7. The data were obtained from a series
simulations for different shear amplitude and frequency co
binations. Complete alignment was defined forSgreater than
0.97, where all the stripes in the system were aligned in
shear direction, and the number of defects~such as a dislo-
cation or a disclination! left was less than 2. The data we

FIG. 5. The steady state orientational order parameter plo
against shear amplitude for shear frequenciesv50.0015 and
0.0035 (t50.35).

FIG. 6. The steady state orientational order parameter plo
against shear frequency for shear amplitudesga50.3 and 0.5 (t
50.35).
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fitted with a power-law equation, leading to a critical cond
tion for alignment,

gc
2vc5const, ~16!

where gc and vc are the critical shear amplitude and fr
quency, respectively.

To understand the critical alignment condition, consid
the balance of convective and diffusive effects for a grain
lamellae. The balance of these two effects leads to

gav
dc

dx
;

d2c

dx2 , ~17!

wherega5dvx /dy is the magnitude of the imposed strai
This leads to the condition

gav l x;1, ~18!

wherel x is a characteristic distance along the flow directio
If we consider the motion of successive layers along thy
direction, so thatdy;d ~d5 layer spacing!, the characteristic
distance is obtained fromga; l x /d, leading to

ga
2v;1/d2. ~19!

The quantity on the right-hand side is a constant for a p
ticular system size, so that Eq.~19! is equivalent to Eq.~16!
at the critical strain and frequency. This argument sugge
that shear alignment results predominantly from the bala
of convection and diffusion.

The shape of the critical strain-frequency curve obtain
from the CDS simulation for complete stripe alignment~Fig.
7! is remarkably similar to that observed in large amplitu
oscillatory shear experiments on~three-dimensional! lamel-
lar block copolymers@46#. There, the transition is from a
parallel orientation~with respect to the shear plane! to a per-

d

d

FIG. 7. Shear amplitude versus frequency, showing the crit
shear condition to achieve complete stripe alignment. The po
shown are from the simulations, and the solid line is a fitted fu
tion.
3-5
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REN, HAMLEY, TEIXEIRA, AND OLMSTED PHYSICAL REVIEW E63 041503
pendicular orientation upon either increasing strain am
tude at a fixed frequency or vice versa. Obviously the mec
nisms of flow in two and three dimensions are differe
especially since layers sliding over one another are not
served in the two-dimensional system. The corresponde
between the shape of the critical strain-frequency curve
Fig. 7 and the results of experiments on bulk lamel
samples may therefore be fortuitous. The next important t
for modeling is to simulate the effect of shear on thre
dimensional lamellar phases, and work on this is in progr
Further work will also examine the influence of hydrod
namics on defect motion, i.e., cell dynamics simulations w
be performed corresponding to Model H rather than Mode
~Cahn-Hilliard-Cook! in the Hohenberg-Halperin classifica
tion @47#.

D. Defect structure

The stripe patterns formed for systems below the criti
strain/frequency condition contain multiple defects, whi
are two-dimensional point defects. A discontinuity in the p
sition of a stripe leads to a dislocation. A discontinuity
stripe orientation leads to a disclination, of which boths
5 1

2 and 21
2 are observed, wheres is the disclination

‘‘strength’’ @48,49#. Line defects are also observed~analo-
gous to wall defects in three dimensions!. In the shear-
aligned stripe pattern shown in Fig. 1~d!, two defect struc-
tures can be observed by looking at the ‘‘white’’ stripes.
the right top corner, a dislocation is evident, and in the b
tom left corner ans52 1

2 disclination can be seen. Thes
two typical defect structures can be traced back to the or
nal pattern—the macroscopically unaligned structure,
shown in Fig. 1~a!. A broken ~or isolated ‘‘white’’! stripe
may form a dislocation under shear, while a branched st
may be stretched to form a disclination. These two defe
can convert into each other as a result of continuous mo
ment of the dislocation or disclination lines under intern
~e.g., temperature fluctuation! or external~e.g., shear or elec
tric field! fields. This phenomenon was described as de
line climb or glide by Amundsonet al. @11#. Figure 1~c!
contains good examples of lines of defects. In particular
the top and bottom lines of dislocations can be identified

The effect of thermal history on quenched defects w
also examined, in the absence of both shear flow and ran
thermal noise. Figure 8 shows examples of stripe patte
formed along different quench paths. All patterns corresp
to steady state structures, i.e.,S had saturated at a consta
value for at least 33104 time steps. In Figs. 8~a!–8~c!, the
structures were formed by direct quench tot50.30, 0.35,
and 0.42, respectively, from an initially unaligned configu
tion. The pattern shown in Fig. 8~d! was simulated for a
different t path. First, a pattern was generated att50.42.
Then a second quench was imposed on the pattern by ch
ing t to 0.30, until a steady state was reached. As expec
the pattern for the deeper quench, Fig. 8~c!, has higher defec
density than any other pattern, as quantified by the numbe
broken, branched, and isolated short stripes. The indi
path, i.e., initial quenching to a lower temperature, then
creasing temperature@Fig. 8~d!#, leads to a higher defect den
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sity than the direct path@Fig. 8~a!#, as the trapped defect
from the intial quench are not totally annealed out. The o
entational order parameterS is unsuitable to quantify the
degree of alignment in these patterns because the~nearly
circular! symmetry is not broken by application of an exte
nal field. Thus instead we exploit the interface normal cor
lation function G(r2r 8) defined in Sec. III A. Figure 9
shows the computedG(r2r 8) for each pattern and high
lights significant differences ofG(r2r 8) for the four quench

FIG. 8. Stripe structures showing quenched defects develo
for different thermal histories, starting from an initial random d
ordered state. All simulations were performed without shear.

FIG. 9. The correlation functionG(r2r 8) of the stripe normals
calculated for the four structures shown in Fig. 8.
3-6
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FIG. 10. Defect annihilation process und
shear. The images show the intermediate def
structures during shear~ga50.6, v50.01! for a
series of time steps from a single simulation ru
The initial configuration in~a! was achieved fol-
lowing shear atga50.5, v50.01 ~for t51.1
3104 time steps!.
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paths, particularly at smallr. This is due to the presence o
localized defect structures. The correlation function sho
quantitatively that a lower defect density is attained via
direct quench tot50.30 than by an indirect thermal path, v
an initially deeper quench.

E. Defect annihilation under shear

Stripe alignment under oscillatory shear is achiev
through stripe stretching and defect annihilation. Fig.
shows a series of frames to demonstrate the process of d
removal. A typical pattern with two dislocations, which w
produced following shear atga50.5, andv50.01 for 1.1
3104 time steps (Dt51), was selected as an initial state
the pattern@Fig. 10~a!#. A stronger shear field~ga50.6, v
50.01! was then applied. The intermediate structures form
during shear were captured at several time steps. After 1
time steps of shear, the top dislocation defect was conve
into a disclination, apparently due to one end of the dis
cated stripe moving down to join with its neighbor. Mea
while, the bottom defect shifted to the right. After 4000 tim
steps, a dislocation was formed again at a new position to
right of the disclination that was destroyed. The defect pa
were brought closer and closer through this dislocati
disclination conversion during the shear, as shown in sta
10~d! to 10~f!. Eventually, two dislocated stripes we
brought together@Fig. 10~g!#, connected@Fig. 10~h!#, and
straightened. Stripe alignment was completed after 8
time steps@Fig. 10~i!#.

Many mechanisms have been proposed for flow-indu
alignment and defect annihilation in lamellar phases@25#.
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These include domain dissolution, grain rotation, select
melting, and defect migration. Supported by small-an
neutron scattering~SANS! and in situ rheo-optical measure
ments, Chen and Kornfield observed that defect migrat
was responsible for lamellae alignment under oscillat
shear in the low frequency regime@25#. The breaking and
reforming of lamellae through the movement of dislocatio
and disclinations were observed. This is in accord with o
servations from our simulations. These show that defect
nihilation is caused by the movement of defects along
shear direction and migration perpendicular to the shear
rection due to microstructure relaxation. These two effe
bring the defects closer to each other, before they eventu
join and are annihilated.

F. Effect of thermal noise on defects

In the preceding simulations, thermal noise was not
cluded. In separate simulations, the effect of addition of th
mal noise to a presheared system was investigated. In
~11!, h was fixed at a nonzero value. To ensure approxim
conservation of the order parameter when noise is added
have adapted a procedure described elsewhere@50#. Specifi-
cally, two independent Gaussian distributed random numb
j l( i , j ) and jm( i , j ) are generated at each lattice point~i,j!,
representing fluctuations in different directions. The no
term is then taken ashj(r ,t)5h@j l( i , j )2j l( i 61,j )
1jm( i , j )2jm( i , j 61)# at each time step. A third set of un
formly distributed random nubmers is used to determ
whether6 is 1 or 2 in the calculation. Increasing nois
3-7
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FIG. 11. Defect annihilation
during thermal annealing ~t
50.35, noise added, amplitudeh
50.1! in the absence of shear
The evolution of defect structure
was captured at several time ste
during a simulation run.
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amplitude leads to a coarsening of the domain structure@51#
and enhanced lamellar orientation due to local thermal
nealing, up to some critical value ofh above which the sys
tem becomes disordered.

Patterns that illustrate the effect of noise on the remo
of defects are illustrated in Fig. 11. The initial state w
selected from a shear-aligned structure, which contains a
of disclinations and two stripes with a small bend. Noise w
then added to the system in the absence of shear. After
time steps, the disclinations were converted into dislocatio
and the bends in two stripes disappeared@Fig. 11~b!#. The
defects then moved closer together@Fig. 11~c!–11~g!# until
finally no defects remained after 2.23104 time steps. Thus
thermal noise acted to mobilize the stripes and facilitate
migration of defects toward each other. In other words
acts to enhance the annealing of defects. In separate ru
was also observed that there exists a critical noise le
similar to the shear amplitude and frequency, to annihil
the defects.

G. Effect of system size and time step

To check the influence of system size, simulations w
run on a 2563256 lattice as well as a 1283128 lattice. The
order parameterS increased more rapidly with time for th
larger system, although the same steady state value ofSwas
eventually obtained as for the smaller system. The differe
in ordering kinetics can be understood to result from
increase in the strain at the moving edge of the simula
box for the larger system compared to the small one@Eq.
~19!#.

In its original implementation@43#, the cell dynamics
method was based on a time stepDt51 @see Eq.~11!#. How-
ever, we found that results for the kinetics of order parame
development performed for different time steps were sup
imposable only withDt,0.5. When shear was applied,
was found that the time step had to be reduced furthe
achieve convergent results. In the case of oscillatory sh
04150
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smaller time steps were needed than for steady shear.
time step was found to have a significant effect on the kin
ics of alignment, but little effect on the final state of alig
ment. To achieve a balance between reasonable simula
run times and accuracy of the order parameter kinetic p
files, time steps in the rangeDt50.1– 0.2 were used for the
oscillatory shear simulations in this study.

IV. CONCLUSIONS

The critical shear conditions for achieving comple
alignment of morphology are of practical importance in l
cating processing parameters for a block copolymer. The
netics of alignment are also important, since they provide
basis for estimating the processing time to reach a w
aligned structure. The degree of orientation and density
defects can strongly affect the performance of well-align
samples. Cell dynamics simulations can play an import
role in elucidating all three of these effects.

Our simulations indicated that large amplitude oscillato
shear can induce alignment of a stripe phase along the s
direction. The degree of the stripe orientation induced
shear depends on the shear conditions. To achieve com
stripe alignment along the shear direction, a critical sh
field, in which shear amplitude and frequency follow
power-law coupling, must be applied, otherwise only par
alignment can be obtained. The kinetics of shear alignm
also depend on the shear condition and quench tempera
In particular, a steady state is reached more rapidly at hig
frequencies and for shallower thermal quenches. Increa
the amplitude of oscillatory shear leads to enhanced orie
tional order, although the kinetics are not strongly depend
on strain amplitude.

Edge dislocations,s56 1
2 disclinations, and stripe ben

walls were observed as the main types of morphological
fect appearing in the simulated block copolymer structur
3-8
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CELL DYNAMICS SIMULATIONS OF SHEAR-INDUCED . . . PHYSICAL REVIEW E63 041503
Defect annihilation under oscillatory shear is due to str
eorientation in the shear direction and defect mobilizat
that leads to the approach of defects, eventually reform
the stripes. Finally, increasing thermal fluctuations or te
perature significantly reduce the defect density.
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