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Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns
formed by block copolymers
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The effect of large amplitude oscillatory shear on two-dimensional stripe patterns formed by block copoly-
mers was investigated using cell dynamics simulations. A global orientational order par&maetta corre-
lation function for stripe normal&(r—r') were used to characterize the degree of stripe orientation under
shear. The kinetics of stripe alignment, quantifiedSwgt various shear and quench conditions were studied as
a function of strain amplitude, shear frequency, and temperature. The mechanisms of shear alignment and
defect annihilation were investigated. A critical shear condition for complete alignment of stripes along the
shear direction was also identified.
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I. INTRODUCTION aries[21-23. The kink bands themselves are generated in a
controlled manner through variation of the rate and ampli-
Block copolymers have found wide application becausdude of steady shear. The kinetics of alignmefefect elimi-
their morphology can be systematically modified not only bynatlon) in .block copolymers pndgr shear flow have also been
controlling the composition and segment length of the polyProbed via rheology and birefringen¢24-2§ and small-

mer blocks but also by changing the processing method. Iﬁn%gnicittfrrigi?nEi;ﬁieorriri]sdﬁdfi,nﬂﬁr?.increasin v important
particular, the global orientation and topological defects in P playing gly imp

. . ole in understanding the mechanisms of morphology
microphase-separated morphology are important factors afnanges in block copolymers. The cell dynamics simulation
fecting .the optical, permeability, electrical, and mechanicalcps) method is a very promising approach to modeling the
properties of block copolymers. The use of block copolymersnesoscopic structure of block copolym¢e9—35 and the

in electronic and photonic applications requires the producinfluence of external fields on morphology. The effect of
tion of highly ordered and defect-free materifly. Flow-  shear on two-dimensional hexagof@ab] and stripd 37] pat-
induced alignment of block copolymer microstructures hagerns has previously been investigated by cell dynamics
been demonstrated for materials subjected to oscillatory o¥imulations. The effects of both oscillatory and step strain on
steady shed2—5], extrusion[6], extensional flowf7,8], and  the hexagonal phase have also been simulated using the cell
roll casting[8,9]. Alignment and defect removal mechanisms dynamics method36]. The relaxation of the shear stress
in a lamellar phase induced by an electric field have alséOIIOWIng step sfrain was analyzed as a function of strain

S . : amplitude, and a two-step relaxation process was observed
been studied in the bulkl0,11). All of the preceding studies ¢ 12 o Girains. After the rapid initial decrease of stress due

have focused on bulk samples. Alignment in block copoly- rejaxation of distorted domains, a plateau was observed
mer films has been achieved using electric fig¢it313, by followed by another decrease in stress that was ascribed to
tuning substrate surface energyt], and by patterning using the slippage of lattice planes. Under oscillatory shear, linear
self-assembled monolayef45,16. Shearing of block co- viscoleastic behavior was observed at low strain amplitudes.
polymers in films between parallel plates is often used taHowever, when large amplitude oscillatory shear was ap-
align samples; however, these are usually closer to the bulglied, a nonsinusoidal stress was found to be out of phase
three-dimensional limit than the two-dimensional limit. with the applied sinusoidal strain and slip of lattice planes
The structure of defects in block copolymers has been thevas again inferred38]. Kodama and Doi37] performed
subject of experimentéll7,18 and theoreticdl19,20 inves-  cell dynamics simulations of stripe patterns under steady
tigation. The effect of shear on defects has also been studiedhear flow and observed two types of lamellar instability:
in particular, Winey and co-workers have undertaken a combreakup-recombination and undulation. A stability diagram
prehensive examination of the effects of steady or large amfor these structures was also obtained in terms of a tempera-
plitude oscillatory shear on kink bands and tilt grain bound-turelike parameter and wave number corresponding to the
lamellar period. Drolet, Chen, and \&s [39] analyzed the
stability boundaries of deformed lamellar morphologies un-
* Author to whom correspondence should be addressed. der shear via numerical analysis of a linearized version of a
"Present address: Departamento de Engenharia de Materia§ahn-Hilliard-Cook equation with added convective term.
Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-They found that the boundaries are affected by shear ampli-
001 Lisbon, Portugal. tude and frequency.

1063-651X/2001/6@}/0415039)/$20.00 63 041503-1 ©2001 The American Physical Society



REN, HAMLEY, TEIXEIRA, AND OLMSTED PHYSICAL REVIEW E63 041503

We present simulation results for a two-dimensional (E(r,0)E(r )= —2kgTMV25(r—r")8(t—t"). (3)
stripe phase as formed, for example, by symmetric block
copolymers(which in bulk would form a lamellar phase Herekg is Boltzmann’s constant antldenotes the tempera-
Although our results are presented in terms of the effect ofure. The fluctuation-dissipation theorem is satisfied #or
shear on a block copolymer stripe phase, the conclusions 1, but for other values the noise has arbitrary strength. In
should apply for any stripe pattern that can be oriented b¥eq. (2), F(¢) is the free energy functional, consisting of
shear because the cell dynamics equations are not specific $hort range and long range interaction terms:
block copolymers. However, stripe phases in other systems
such as type | superconductor filfg0], ferromagnetic gar- F(p)=Fs() +FL(4). (4)
net films[41,42], or Langmuir monolayers of lipid molecules . . . .
[42] cannot be oriented by shear. The short range interaction term is written[&§)]

The stripe orientation is characterized using an interface D
orientational order parameter and an interface normal corre- Fof (/,):f dr( H(p)+=[V ¢(r)]2), (5)
lation function. We have investigated the dynamics of stripe 2

alignment under large amplitude oscillatory shear at various . .
" o - where D is a phenomenological constant that controls the
shear and quench conditions. A critical conditiehear fre-

quency and amplitudefor complete alignment of the co- free energy penalty for spatial composition heterogeneity,

polymer stripes under oscillatory shear is given. Finally, theandH(w) Is a free energy functional that has two minima in

process of defect annihilation under shear is investigated. an ordered phase which can be writter{35]

The paper is organized as follows. In Sec. I, details of the r A v u
CDS model are provided, followed in Sec. Ill by a discus- H(¢/;)=( — 5+ (1-2f )2 |+ §(1—2f)1p3+ Zd/‘.
sion of the results, first introducing measures of the orienta- ©)
tional order of stripes and a correlation function for stripe

orientation. Then the dynamics of shear-induced alignmentigre - is a temperaturelike parameter aAdv, andu are

as a function of temperature and the frequency and amplitudgnenomenological constants. The long range interaction term
of oscillatory shear are investigated. We then identify a criti5in £q. (4) is given by[44]

cal condition for shear-induced parallel alignment of stripes.

The nature of the defect structures in the stripe pattern and B _ _

the effects of thermal annealing and shearing on defect anFL(¥)= §f dflf draG(ri—ro)[g(ro) = 1l e(ra) — 41,

nihilation are then considered, as are the effect of system size )

and simulation time step. Finally, conclusions are summa-

rized. where G(r,—r,) is the Green’'s function for the Laplace
equationV2G(r;—r,)=—8(r;—r,). The parameter, B,

Il. THE CDS MODEL and 7 may be related to polymer characteristics, such as the

i i degree of polymerizatiol, the segment length, and the
In the cell dynamics method, an appropriate order pParamg|ory-Huggins interaction parametg36,37.

eter takes valueg(t,i) in celli of a discrete lattice at time We now turn to a description of the dynamics of a block
For anAB diblock copolymer a suitable choice is the com- ¢opolymer in the presence of a flow field, neglecting hydro-
positional order parameter dynamics. The time evolution of the order parameter under a
_ B B macroscopic shear flow is given by a CHC equation modified
Y1) = Galr) = dp(r) +(1=21), @ by addition of a convective teri86,37,
where ¢(r) and ¢g(r) are the local volume fractions of I SF(4)
blocks A and B, andf is the block length ratio. e +V-(vp)=M Vz(a—w + né(r,t), (8

We consider first dynamical equations in the absence of

shear. The cell dynamics equations for a conserved order _ . ' . .

. wherev=(v,,vy,v,) is the flow field. We consider oscilla-
parameter, appropriate for a block copolymer, can be showpOr shear flowé defined b
to correspond to a coarse-grained discretization of the Cahn- y y

Hilliard-Cook equatior{43], vy=¥()y, vy,=0,=0, 9)
I _ ool OF ) where y(t) = v, sin(wt). Writing g(¥) =dH(y)/dy, Eq.(8)
I_MV ( o Faéry, @ thus becomes

whereM is a phenomenological mobility constant apds P L ) )

the amplitude of thermal noise. Here we $4t=1 which Tt W TV V() + DV =Byt pé.

correspondingly sets the time scale for diffusive processes. (10

Also in Eq. (2) &(r,t) is a Gaussian random noise term, _ _ _ _ _
satisfying the fluctuation-dissipation theorem, in this case Cell dynamics simulations correspond to coarse-grained dis-
cretizations of the Cahn-Hilliard-Coolkor time-dependent

(&(r,t))y=0, Ginzburg-Landapequation. The method is no less realistic
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than direct numerical integration of the partial differential v” ?( \4 u
equations, and provides significant computational advantages ’..
[43]. This allows easier exploration of the late-time regime /e, /

of phase ordering. Furthermore, it has been shown that the
CDS method has essentially the same dynamical scaling
properties as the CHC equation, and is therefore a reliable
tool for its elucidation43].

The discrete cell dynamics equation corresponding to this

N ﬁ : 5
«'r—. L=
PRI
expression used in the simulationd 80,36, ‘,ﬂ_I)S- @ b

(a) before shear (b) v,=0.3, ®=0.002
Y(n,t+At) = (n,t) — AT (n,1))) =T (n,t) +By(n,t)

—é(n, )+ yy[(n+1ny,t)
—p(n—1ny,0)1}. (11

Here At is the time step

I'(n,t)=g((n,t) = ¢(n,t) + D[{{(n,1))) — lﬂ(n,t)](,lz)

N\
I

where the map function used wWEZ5] (¢) 7,=0.4, ©=0.004 (d) 7,=0.5, ©=0.006

g(p)=[1+7—A(1-21)?]p—v(1-2f)¢p*—uy’. FIG. 1. Stripe morphology achieved after prolonged oscillatory
(13 shear under various shear conditions, as indicated((35).

This polynomial form differs from the usual symmetric func-

ey — . ’ — /al260(r) a—i26(r")
tion g(¢)=Atanh@) used in cell dynamics simulations G(r—r")=(In(r)-n(r"))=(e € )

[43,45, because it is necessary to include a cubic term in Eq. =(2 cog B—1), (15)
(6) to account for the formation of hexagonal and cubic
phases when using a Landau free energy. whereg is the angle between the unit normal vectors &hd

_In the present study, the stripe phase was simulated for gopotes a spatial average. For the discrete stripes in the simu-
d|blo§:I§ copolymer withf=0.5. _Shear(_ed periodic boundary lation, B (equal tonw/4, n=0,1,2,...,7 was computed with
conditions were usef6]. The §|mulat|ons were performed egpect to the vector between adjacent cells at the stripe
with the following parameters.D=0.5,_B=0.02, u=_0.5, boundary. For smali=r—r’, G(r—r') is strongly depen-
andv =1.5. The results presented herein were obtained for §ant on Jocal stripe shape and orientation. For larger’
128x 128 lattice. However, we have also performed simula-g ') approaches its value for random stripe orientation
tions on a 25& 256 lattice. The ordering kinetics are found (equal to zerh For complete alignment along the shear di-

to be the same, provided that the time step is rescaled, &8ction,G(r—r') approaches 1. Therefore, the interface nor-
discussed in Sec. Il G below. The noise amplitude was zerq,5| correlation function depends on the spatial extent and
except where stated. density of defects.

Ill. RESULTS AND DISCUSSION B. Dynamics of stripe alignment

A. Characterization of copolymer stripes Results from a simulation where large amplitude oscilla-

The degree of alignment of the stripes is quantified usindgory shear was applied to a macroscopically disordered stripe

the two-dimensional nematic orientational order parameter,pattern(generated from an initially random disordered state
are shown in Fig. 1. Figure(d) is an unsheared stripe pat-

S=(2cos -1, (14)  tern. Figures (b)—1(d) contain stripe patterns generated after
5x 10° time steps under oscillatory shear for different com-
where 6 is the angle between the unit normal vector of thebinations of amplitude and frequency. Figure 2 shows the
stripes and the unit normal vector in the direction of thetime development of the orientational order param&éwr
applied shear field. The spatial average takes the v&lue the same conditions as in Fig. 1; however, the mean order
=0 for an isotropic phase, arfé=1 for a completely ori- parameter was computed from seven independent runs. As
ented phase. seen in Fig. 2Sreaches a constant value for all cases stud-
To quantify the correlation of stripe orientation over dif- ied, confirming that a steady state has been reached. It was
ferent length scales, and therefore characterize the effect oibted that the pattern was not static, even thoBgemained
defects on the morphology, a correlation function for theat its plateau value. Instead, the defect pattern moved around,
stripe normaln(r) at the interface betweef andB stripes  but could not be annihilated under the strength of the shear
was introduced: field applied even after X10° time steps. In the cases
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FIG. 2. Alignment kinetics under the shear conditions shown in

Fig. 1. The curves correspond to paft$—(d) in Fig. 1. FIG. 4. Alignment kinetics for different quench temperatures

o . ) Oscillatory sheafy,=0.5, »=0.007 was appliedduring the evo-
shown in Figs. (b), 1(c), and Xd) only partial alignment of |ution of the structure.

the stripes is attained, in which many defects, such as dislo-
cations, disclinations, and sharp bends, are retained. The de- . L
fect density varies with the shear amplitude and frequencgSCIIIatory sheafy,=0.5, w=0.007. Three cases with dif-
applied. Saturation of alignment is achieved only above 4erentrvalues(r=0.30, 0.36, and 0.42vere simulated with
threshold shear conditiofsuch as shear amplitudg,=0.5, the thermgl noise amplltudez 0.1In the.S|muIat|on, a steady
frequency w=0.006, as shown in Fig.(d)]. The time to state unaligned stripe pattern was first generated from an
reach saturated alignment depends on shear conditions. ifitially random disordered state. Oscillatory shear was then
general, a stronger shear figldrger amplitude and higher applied to the system at constantiuring the pattern evolu-
frequency causes the plateau to be reached sooner. tion. The datgobtained from at least five independent runs
The effect of the coupling between shear and temperaturgeveal that, as the quench deepéasger 7 values, the sys-
was also explored. Figure 3 shows the effect of the temperdem becomes less susceptible to shear orientation, and a
turelike parameter (related to quench deption the align-  lower degree of alignment and more defects were found fol-
ment dynamics of the stripe system under fixed conditions ofowing shear. Alignment is also slower for a deeper quench.
The development of the order parameter when shear was
1.0 applied from the start of the quenéte., att=0 the system
was in the isotropic statas shown in Fig. 4 for the same
quench depths as Fig. 3, and again using an average over at

0.8 - least five independent runs. In general, the order parameter
kinetics (and saturation value d¥ are not strongly depen-
dent on the path, i.e., the time at which shear is applied.

0.6 -

. C. Critical shear conditions for parallel alignment
04 Figure 5 shows the steady state valué&afs a function of

shear amplitude at two different frequencies=0.0015 and
—0— =030 0.0035 forr=0.35. The oscillatory shear was applied after
02 F O 1=036 the steady state structure was form@bout 3x< 10* time
—A— =042 steps. The runs were continued until the alignment saturated
(between 10 and 16 time steps and the data points shown
; ! | in the figure are averages from at least three independent
0 2 4 6 x 10 runs. The data reveal that at a fixed frequency the orienta-
tional order paramete® gradually increases with increasing
shear amplitude until complete alignment is achieved at a
FIG. 3. Alignment kinetics for different quench temperatures ~ Critical value of the shear amplitude. This critical value is
Oscillatory sheafy,=0.5, w=0.007 was appliedafter the evolu-  dependent on shear frequency: at a higher frequency, a lower
tion of an unaligned structure. shear amplitude was needed to align the stripes completely.

0.0

time steps
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FIG. 5. The steady state orientational order parameter plotted FIG. 7. Shear amplitude versus frequency, showing the critical
against shear amplitude for shear frequencies 0.0015 and shear condition to achieve complete stripe alignment. The points
0.0035 =0.35). shown are from the simulations, and the solid line is a fitted func-

tion.

Representative results showing the dependencg o
frequency for different shear amplitudes are shown in Fig. 6fitted with a power-law equation, leading to a critical condi-
In contrast to the smooth dependenceSadn strain ampli-  tion for alignment,
tude, the orientational order parameter increases sharply at a

critical frequency above which complete alignment is Y2w=const, (16)
achieved for sufficiently large strains, the magnitude of the . )
critical frequency depending on strain. where y, and o, are the critical shear amplitude and fre-

The critical shear amplitude versus critical oscillatory fre-AUency, respectively. _ . _
quency for achieving essentially complete stripe alignmentis 1© understand the critical alignment condition, consider
shown in Fig. 7. The data were obtained from a series othe balance of convective and diffusive effects for a grain of
simulations for different shear amplitude and frequency com!@mellae. The balance of these two effects leads to
binations. Complete alignment was defined $greater than

I : i dy  d?y
0.97, where all the stripes in the system were aligned in the T
p y g YVaw ax Il (17)

shear direction, and the number of defe@sch as a dislo-

cation or a disclinationleft was less than 2. The data were . . . .
n where y,=dv,/dy is the magnitude of the imposed strain.

This leads to the condition

1.0 + YVawly~1, (18)

wherel, is a characteristic distance along the flow direction.
If we consider the motion of successive layers alongthe
direction, so thatly~d (d=layer spacing the characteristic

0.6 - distance is obtained from,~1,/d, leading to

Yo~ 1/d2, (19
04

The quantity on the right-hand side is a constant for a par-
ticular system size, so that E(L9) is equivalent to Eq(16)
—&— v,=05 at the critical strain and frequency. This argument suggests
that shear alignment results predominantly from the balance
0.0 ! ! ! of convection and diffusion.

0.000 0.004 0.008 0.012 0.016 The shape of the critical strain-frequency curve obtained
from the CDS simulation for complete stripe alignméfFig.
7) is remarkably similar to that observed in large amplitude

FIG. 6. The steady state orientational order parameter plotte@scillatory shear experiments dthree-dimensionallamel-

against shear frequency for shear amplituggs-0.3 and 0.5 ¢  lar block copolymerq46]. There, the transition is from a
=0.35). parallel orientatior{with respect to the shear plarne a per-

—O— 7,=0.3

O]
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pendicular orientation upon either increasing strain ampli-
tude at a fixed frequency or vice versa. Obviously the mecha-
nisms of flow in two and three dimensions are different,
especially since layers sliding over one another are not ob-
served in the two-dimensional system. The correspondence
between the shape of the critical strain-frequency curve in
Fig. 7 and the results of experiments on bulk lamellar
samples may therefore be fortuitous. The next important task
for modeling is to simulate the effect of shear on three-
dimensional lamellar phases, and work on this is in progress.
Further work will also examine the influence of hydrody-
namics on defect motion, i.e., cell dynamics simulations will
be performed corresponding to Model H rather than Model B
(Cahn-Hilliard-Cook in the Hohenberg-Halperin classifica-
tion [47].

D. Defect structure

The stripe patterns formed for systems below the critical
strain/frequency condition contain multiple defects, which
are two-dimensional point defects. A discontinuity in the po-
sition of a stripe leads to a dislocation. A discontinuity in
stripe orientation leads to a disclination, of which bath
=1 and —3 are observed, whers is the disclination
“strength” [48,49. Line defects are also observéanalo-
gous to wall defects in three dimensigndn the shear-
aligned stripe pattern shown in Fig(dl, two defect struc-
tures can be observed by looking at the “white” stripes. InSity than the direct pathFig. 8], as the trapped defects
the right top corner, a dislocation is evident, and in the botfrom the intial quench are not totally annealed out. The ori-
tom left corner ans=—13 disclination can be seen. These entational order paramete is unsuitable to quantify the
two typical defect structures can be traced back to the origidegree of alignment in these patterns because(ilearly
nal pattern—the macroscopically unaligned structure, asirculan symmetry is not broken by application of an exter-
shown in Fig. 1a). A broken (or isolated “white”) stripe  nal field. Thus instead we exploit the interface normal corre-
may form a dislocation under shear, while a branched strip&tion function G(r—r’") defined in Sec. IllA. Figure 9
may be stretched to form a disclination. These two defectshows the compute(r—r’) for each pattern and high-
can convert into each other as a result of continuous movdights significant differences @&(r —r’) for the four quench
ment of the dislocation or disclination lines under internal
(e.g., temperature fluctuatipor external(e.g., shear or elec-
tric field) fields. This phenomenon was described as defect
line climb or glide by Amundsoret al. [11]. Figure Xc) 0.4
contains good examples of lines of defects. In particular, at
the top and bottom lines of dislocations can be identified.

The effect of thermal history on quenched defects was 03
also examined, in the absence of both shear flow and random '
thermal noise. Figure 8 shows examples of stripe patterns ~
formed along different quench paths. All patterns correspond Z
to steady state structures, i.8.had saturated at a constant & 0.2 -
value for at least ¥ 10* time steps. In Figs. @—8(c), the
structures were formed by direct quench e 0.30, 0.35,
and 0.42, respectively, from an initially unaligned configura- 01 L
tion. The pattern shown in Fig.(8 was simulated for a
different = path. First, a pattern was generatedrat0.42.

(c) 1=0.42 (d) 1=0.42, then 0.30

FIG. 8. Stripe structures showing quenched defects developed
for different thermal histories, starting from an initial random dis-
ordered state. All simulations were performed without shear.

—e— 1=0.30
—&— 1=0.35
—— 1=0.42
—0— 1=0.42, then 0.30

Then a second quench was imposed on the pattern by chang- o=y 088 o
ing 7to 0.30, until a steady state was reached. As expected, 00 1 ' ' ' ! 1
the pattern for the deeper quench, Fig)8has higher defect 0 5 10 15 20 25 30 35 40 45

density than any other pattern, as quantified by the number of
broken, branched, and isolated short stripes. The indirect
path, i.e., initial quenching to a lower temperature, then in- FIG. 9. The correlation functio®(r—r’) of the stripe normals
creasing temperatuf€ig. 8d)], leads to a higher defect den- calculated for the four structures shown in Fig. 8.

r
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S ——
(2) t=0 (b) t=1000 (c) t=4000
FIG. 10. Defect annihilation process under
] shear. The images show the intermediate defect
- — — structures during shedty,=0.6, ®=0.01) for a

series of time steps from a single simulation run.
The initial configuration in(@ was achieved fol-
lowing shear aty,=0.5, ®=0.01 (for t=1.1
X 10* time steps

(d) t=6000 () t=6600 (f) t=6800

(g) t=7100 (h) =7700 (i) t=8000

paths, particularly at smatl. This is due to the presence of These include domain dissolution, grain rotation, selective
localized defect structures. The correlation function showsnelting, and defect migration. Supported by small-angle
quantitatively that a lower defect density is attained via aneutron scatteringSANS) andin situ rheo-optical measure-

direct quench ta-=0.30 than by an indirect thermal path, via ments, Chen and Kornfield observed that defect migration

an initially deeper quench. was responsible for lamellae alignment under oscillatory
shear in the low frequency regim@5]. The breaking and
E. Defect annihilation under shear reforming of lamellae through the movement of dislocations

Stripe alignment under oscillatory shear is achieved®d di.sclinations were obsgrved. This is in accord with ob-
through stripe stretching and defect annihilation. Fig. 10S€rvations from our simulations. These show that defect an-
shows a series of frames to demonstrate the process of deféfilation is caused by the movement of defects along the
removal. A typical pattern with two dislocations, which was shear direction and migration perpendicular to the shear di-
produced following shear af,=0.5, andw=0.01 for 1.1  rection due to microstructure relaxation. These two effects
X 10* time steps At=1), was selected as an initial state of bring the defects closer to each other, before they eventually
the pattern[Fig. 10@]. A stronger shear fieldy,=0.6, ®  join and are annihilated.
=0.01) was then applied. The intermediate structures formed
during shear were captured at several time steps. After 1000 F. Effect of thermal noise on defects
time steps of shear, the top dislocation defect was converted In th di imulati th | noi £ in-
into a disclination, apparently due to one end of the dislo- N the preceding simulations, thermal noise was not in
cated stripe moving down to join with its neighbor. Mean- cluded.'ln separate simulations, the effect'of adqlltlon of ther-
while, the bottom defect shifted to the right. After 4000 time mal noise tq a presheared system was investigated. _In Eg.
steps, a dislocation was formed again at a new position to the-Y: 77 was fixed at a nonzero value. To ensure approximate
right of the disclination that was destroyed. The defect pair§onservation of the order parameter when noise is added we
were brought closer and closer through this dislocationhave adapted a procedure described elsewli&ie Specifi-
disclination conversion during the shear, as shown in stage&lly, two independent Gaussian distributed random numbers
10(d) to 10f). Eventually, two dislocated stripes were £i(i,j) and &y(i,j) are generated at each lattice poinj),
brought togethefFig. 10g)], connectedFig. 10h)], and  representing fluctuations in different directions. The noise
straightened. Stripe alignment was completed after 880Cerm is then taken as#né(r,t)=n[&0,j)—&(=1))
time stepqdFig. 1Qi)]. +&m(i,j) —€&m(i,j £1)] at each time step. A third set of uni-

Many mechanisms have been proposed for flow-inducefbormly distributed random nubmers is used to determine
alignment and defect annihilation in lamellar pha$2S].  whether* is + or — in the calculation. Increasing noise
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FIG. 11. Defect annihilation
during thermal annealing (7

1..\ 
Il

I

@0 (b) t=500 (d) t=8000 =0.35, noise added, amplitude

=0.1) in the absence of shear.

v a——— The evolution of defect structures

w was captured at several time steps

% during a simulation run.

A A BT m

—————————— e

P o A A AP A e

e et S e T it

e Sy e i S

(e) t=11000 (f) t=13000 (g) t=15000 (h) t=22000

amplitude leads to a coarsening of the domain strudaté  smaller time steps were needed than for steady shear. The

and enhanced lamellar orientation due to local thermal antime step was found to have a significant effect on the kinet-

nealing, up to some critical value af above which the sys- ics of alignment, but little effect on the final state of align-

tem becomes disordered. ment. To achieve a balance between reasonable simulation
Patterns that illustrate the effect of noise on the removatun times and accuracy of the order parameter kinetic pro-

of defects are illustrated in Fig. 11. The initial state wasfiles, time steps in the rangkt=0.1-0.2 were used for the

selected from a shear-aligned structure, which contains a pagscillatory shear simulations in this study.

of disclinations and two stripes with a small bend. Noise was

then added to the system in the absence of shear. After 500

time steps, the disclinations were converted into dislocations, IV. CONCLUSIONS
and the bends in two stripes disappealEd). 11(b)]. The
defects then moved closer togeth€ig. 11(c)—11(g)] until The critical shear conditions for achieving complete

finally no defects remained after X240* time steps. Thus, alignment of morphology are of practical importance in lo-
thermal noise acted to mobilize the stripes and facilitate theating processing parameters for a block copolymer. The ki-
migration of defects toward each other. In other words, itnetics of alignment are also important, since they provide the
acts to enhance the annealing of defects. In separate runsbisis for estimating the processing time to reach a well-
was also observed that there exists a critical noise levegligned structure. The degree of orientation and density of
similar to the shear amplitude and frequency, to annihilatejefects can strongly affect the performance of well-aligned
the defects. samples. Cell dynamics simulations can play an important
role in elucidating all three of these effects.
G. Effect of system size and time step Our simulations indicated that large amplitude oscillatory

To check the influence of system size, simulations weréghear can induce alignment of a stripe phase along the shear
run on a 256 256 lattice as well as a 128128 lattice. The direction. The degree of the stripe orientation induced by
order paramete$ increased more rapidly with time for the shear depends on the shear conditions. To achieve complete
larger system, although the same steady state valSanafs  stripe alignment along the shear direction, a critical shear
eventually obtained as for the smaller system. The differencéeld, in which shear amplitude and frequency follow a
in ordering kinetics can be understood to result from thepower-law coupling, must be applied, otherwise only partial
increase in the strain at the moving edge of the simulatioralignment can be obtained. The kinetics of shear alignment
box for the larger system compared to the small pBg. also depend on the shear condition and quench temperature.
(19)]. In particular, a steady state is reached more rapidly at higher

In its original implementation43], the cell dynamics frequencies and for shallower thermal quenches. Increasing
method was based on a time step=1 [see Eq(11)]. How-  the amplitude of oscillatory shear leads to enhanced orienta-
ever, we found that results for the kinetics of order parametetional order, although the kinetics are not strongly dependent
development performed for different time steps were superen strain amplitude.
imposable only withAt<0.5. When shear was applied, it  Edge dislocationss= =+ 3 disclinations, and stripe bend
was found that the time step had to be reduced further tavalls were observed as the main types of morphological de-
achieve convergent results. In the case of oscillatory sheafect appearing in the simulated block copolymer structures.
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